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GRAND FINALE Our music series comes 
to an end with an overview of the mostup- 589] 
to-date electronic equipment 

HOT PROPERTY An infrared joypad that 5Q( 
provides remote control for games action 

ODDS-ON FAVOURITE We review 
Classic Racer, a challenging game for Oric 600 
and Atmos owners 

VARIATIONS ON A TURTLE Defining 
variables is as important in LOGO as any AQ3 
programming language. We learn how to 
implement them 

FILE PROTECTION TO FILE 
TRANSFER A weekly glossary of 
computing terms 

PROGRAMMING PROJECTS 

CHARACTER FORMING We show how 
easy it is to create user-defined characters on ARB 
the Spectrum and BBC Micro 

FINE TUNING Valuable tips for saving 
programming time and making the most of OG 
your memory space by writing more efficient 
code 

CHANGE OF ADDRESS Indexed 
addressing is an extremely important idea BOR 
for the machine code programmer to master 

MOTOR CONTROL Using the buffer and 
output boxes that we have constructed we BR45 
write the software to control a Lego car 

| INSIDE 

REFERENCE MANUAL A reference card BACK 
containing the Z80 instruction set COVER 

Next Week 
© Continuing our occasional 
series on portable computers, 
we review Epson’s PX-8, the 
super lap-held with CP/M, 
telecommunications and RAM 
disk 

@ We begin a large-scale 
survey of micros in movement 
— robotics at work and play ~““ 

© Our workshop feature 
introduces reversed polarity 
Switching. 
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In this final part of the series, we look at 
some of the advanced systems that have 
appeared since electronic music began to 
incorporate digital technology. Many of 
these systems cost thousands of pounds, but 

| there are signs that, as research costs are 
recouped and competition increases, drastic 
price reductions are on the way: 

The single most significant recent aevelopmient| in 
electronic music has been in the area of digital 
recording. Not only has sound recording quality 
improved immensely, but the whole meaning of 
the word ‘recording’ has changed to embrace a 
number of different techniques. If we now 
understand recording to mean ‘the digital 
encoding of sound and its organisation into music’, 
then we can begin to grasp what is happening to 
music in the 1980s. 

Since the Second World War, sound recording 
on magnetic tape has been the norm, with formats 
ranging from the tiniest microcassette up to the 
large spools of 24-track tape used in professional 
recording studios. When a recording is made on 
magnetic tape, the minute particles of metal oxide 
on the tape surface become rearranged in complex 
patterns that are analogous to the sound wave- 
forms they represent. As the tape passes the 
playback head of a recording device, these 
patterns are converted into chains of electrical 
voltages. These voltages are then fed to the 
loudspeakers, which reproduce the sound 

_recorded on the tape. 
Because the arrangement of particles may be 

fairly accurately judged in relation to the tape 
playback head, it is quite easy to find where a 
particular sound is on a piece of magnetic tape, so 

razor blades has become an important skill to be 
acquired by sound engineers. 

In digital recording, sound is encoded 
numerically along the tape, and the playback head 
becomes a digital-to-analogue converter. The 
loudspeakers are powered in the same way as 
before, but they use voltages generated by the 
D/A converter. Provided there is sufficient data 
for conversion, 
reproduction that is greatly superior to that 
achieved with magnetic tape. And, as long as the 
data remains intact, the tape may be copied 
digitally hundreds of times with no loss of quality. 
With magnetic tape, however, each ‘generation’ of 
copying adds hiss and distortion to the recording. 

This type of noise degradation has been a 
familiar problem for sound engineers for many 

. the splicing and editing of tape with demagnetised 

digital tape can produce 
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MARY EVANS PICTURE LIBRARY 

CALLIGRAPHY BY BERNARD JENNINGS 

Past Echoes 
This piece is taken from ‘New 
Atlantis’, a vision of utopia 
written by Francis Bacon (1561- 
1626) . His descriptions of 

sounds seem to predict the 
extraordinary power and 
versatility of today’s electronic 
music 

| APPLICATION /MUSIC 

years. Now that this has been overcome, many top 
recording studios have installed 24-track digital 
tape recorders. Using these, the sound 
reproduction is so accurate that engineers find it 
impossible to ascertain whether a sound coming 
from the studio monitor speakers is played by a 
musician in the recording area or is produced by 
the playback of a digital tape. But new problems 
have emerged: it is no longer possible to ‘see’ 
where sounds are located on a digital tape, which 
makes editing more difficult, and splicing is 
becoming an outmoded skill. Another difficulty is 
‘studio noise’, an unwanted and usually unheard 
characteristic of some audio equipment. Magnetic 
tape was not sensitive enough to register this, but 
digital recordings tend to pick it up. 

While 24-track recording is still the prerogative 
of expensive studios, single-track digital recording 
of the same quality is available to any owner of a 
Betamax home video recorder. Video tape is a 
digital medium, and as such it can be used to 
encode any type of data. The Sony PCM (Pulse 
Code Modulator) is a unit that converts a 
Betamax video recorder into an audio tape 
recorder. This unit, which costs a few hundred 
pounds only, has the potential to make similarly 
sized analogue recorders obsolete. 

Digital sound encoding, or sampling, is at the 
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heart of the Fairlight CMI (Computer Musical 
Instrument), one of the best known of the 
advanced systems. The Fairlight can sample any 
sound for a duration of up to two seconds, and it 
will then reproduce that sound across a pitch range 
of six octaves. Sampling is a real breakthrough in 
electronic music. For years, engineers and 
musicians have been trying to simulate the sound 
of strings or woodwinds by using synthesisers, and 
in some cases they have come very close to 
reaching their goal. But sampling will provide not 
only a remarkable reproduction of the sound of 
‘strings’, it can produce the sound of a particular 
violin. Furthermore, in some cases, it can 
reproduce the sound of a particular player in a 
particular room. In the first article in this series, we 
saw how the musique concréte composers of the 
1950s spent weeks splicing together tiny snippets 
of recorded tape, eventually producing large-scale 
pieces. The computer manipulation of samples 
would now enable a composer to produce similar 
results in minutes. 

SAMPLING INSTRUMENTS 
A sampling instrument like the Fairlight can 
overcome the natural limitations of musical 
instruments. For example, it is quite easy for a 
flautist to produce a warm, breathy tone quality at 
the lowest end of the flute’s range. However, it is 
impossible for a player, no matter how skilled, to 
achieve this type of sound two octaves higher at 
the top end of the instrument’s range — the 
physical design of the flute prevents this. A 
Fairlight user, on the other hand, can sample the 
low, breathy tone and then transpose it upwards by 
two octaves on the keyboard. The result will still 
sound like a flute, but it is a type of flute that 
cannot exist in the ‘real’ analogue world. 

The Fairiight can supply a screen display of any 
of its sampled sounds, which are stored on 8in 
disks. Different characteristics of an individual 
sound may be examined in succession: it is often 
easier to tell what is ‘wrong’ with a particular 
sound by looking at it rather than listening to it. 
Many sounds need to be longer than their original 
two-second sample duration. By seeing how the 
different waveforms inside the sound are related, a 
point can be selected at which the sound could be 
made to start /ooping, or repeating. If the right 
point is selected, this will give the illusion of 
genuine continuity. Analogue sound doesn’t 
behave like this, of course, so looping can give an 
unusual dimension to the music being produced. 

The Fairlight user has two ways of inputting 
music, apart from playing in ‘real time’ at the 
keyboard. The first method, known as ‘Page R’, 
gives a five-line stave display, and the user enters 
notes onto the stave from the music keyboard. 
Any timing errors are ‘tidied up’ automatically by 
the computer in accordance with the metre or time 
signature that the user has already specified. 

The second method is to use an MCL (music 
composition language). The Fairlight MCL 
demands that every note-event should be entered 
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via the alphanumeric keyboard, but it enables time 
and accentuation to be changed on a note-for- 
note basis. The Fairlight has an eight-voice 
capacity, so a user may enter eight different 

_ Sequences, played by eight different sounds or 
‘instruments’. Each of these may be slightly out of 
time — by a matter of milliseconds — with the 
others, and the whole performance is co- 
ordinated by the Fairlight’s internal clock. 

It may well be asked what use it is for music to be 
performed in this ‘inaccurate’ way, especially by a 
computer. The answer is that people never play 
exactly in time, and one of the elements of 
performance — especially among jazz and some 
classical players — is the way in which a musician 
may ‘bend’ musical time when executing a 
passage. An operating system like the Fairlight 
provides a way in which certain styles of 
performance can be simulated. These simulations 
can be used in experimental and research work, 
just as computer simulations are used in the design 
of car bodies, aircraft wings and Space Shuttle 
heat-shields. . 

Many musicians are justifiably concerned that 
instruments such as the Fairlight will replace 
people, especially as the simulating capacity of 
such equipment develops. Groups like Wang 
Chung, Duran Duran and Culture Club use 
Fairlights as part of their production process, and 
it is often impossible to tell what is actually being 

combined to produce the individual sound. The 
type of characteristics selected should reflect the 
way in which the music is played. Such a system 
would increasingly resemble the character and feel 
of a real acoustic instrument. The only difference 
is that no one upright or grand piano iS exactly like 
another. All Kurzweil CMI ‘pianos’ will be 
identical in character and feel — unless users 
develop a method of writing their own ‘character 
and feel’ software. 
A system even more advanced than the 

Fairlight, Synclavier and Kurzweil combined is 
rumoured to be under development by Lucasfilm 
— the company responsible for Star Wars. Called 
the ASP (Audio Signal Processor), this is expected 
to incorporate every type of musical digital sound 
facility that is presently available only in a large 
music studio complex into one operating system. 
So, just as the computers and synthesisers of the 
1950s took up space equivalent to the area of 
several rooms and yet now occupy only a desk- 
top, we can expect the recording studio of the 
future to be a portable package. 

The incorporation of digital technology has not 
been confined solely to sound-generating systems 
and devices. Modern recording studios usually 
include a number of sound-treatment units as part 
of their basic equipment. An example is the 
reverberation unit. Music is routed through this 

Fairlight MCL 
The music composition 
language used by the Fairlight 
CMI is menu-driven, so choices 
are made from clear, thorough 
menus on the screen. The 
waveforms displayed on page 
584 were generated with a list of 
sound parameters in data 
statements, similar to a BASIC 
listing, then displayed and 
printed out using commands 
from the menu 

_ played and what is Fairlight-performed. However, 
once a user gets to know the operating system, it 
becomes clear that the Fairlight is much more than 
just an expensive mimicking device. It is a 
genuinely new musical instrument, and has a 
potential that is still largely unexplored. 

Although it is the best known, the Fairlight is 
not the only such instrument available. At twice 
the price of the Fairlight, the Synclavier system 
(costing around £30,000) has similar facilities, but 
on a larger scale. Data is stored using hard 
Winchester disks with a 40 megabyte capacity. An 

entire album could be produced and recorded 
within the Synclavier system itself, making an 
advanced 24-track digital machine completely 
unnecessary. 

But even the Synclavier has its limitations. At 
present, all the available sampling instruments ; 
have one thing in common — they reproduce the pees 
sampled sound as close to the original as possible, : 

‘ unless the user has intervened to make a specific 
modification. But a trumpeter, in the middle of a 
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unit to add echo or ‘reverb’, and rockabilly | 
guitarists and dub reggae producers have 
depended on this type of treatment to give their 
music its particular sound. | 
The Quantec is a digital unit that, instead of | 

merely providing reverberation, simulates the | 
types of reverberation that occur in rooms and 
spaces of different sizes. Its smallest ‘acoustic 
space’ is a box with a volume of one cubic metre, 
and the preset simulations include sizes typical of 
living rooms, auditoriums, aircraft hangars and 
cathedrals. The Quantec’s most interesting feature 
is the facility it offers to prolong the reverberation 
well beyond natural acoustic or physical limits. So, 
if a sound occurs in the cathedral-size simulation, ~ 
and the reverberation time is maximised, the | 
whole event will last several minutes — the effect is | 
like listening to an echo provided by 10 Grand s 3 
Canyons linked together! | | 

It is said that, in the American Midwest in the. 
1950s, there was a small rockabilly studio that was 
built near a grain silo. It was this huge space that | 
provided the studio with its classic echo-filled | 
rockabilly sound. The modern use of digital units 
such as the Quantec is more mundane, being 
confined mainly to the post-production stages of ; 
television and film work. Actors can be filmed 
talking in the acoustically “dead’ environment of a | 
studio, and the soundtrack can be treated — 
afterwards to provide an acoustic resonance that | 
suits the space in which the action is meant to | 
occur. | at 

Fairlight Fare | 
These waveform displays were sampled sound. These P 5 
created and printed ona waveforms are produced by HUMAN VALUES 
Fairlight CMI music system. The _ digitising the actual sounds of a Many people, musicians and non-musicians alike, 

_firstis an example ofasine wave human voice, in the second | feel that digital technology applied to music has a 
pattern generated by the instance, and a trumpet in the . ans oA: 

Fairlight using FM synthesis third. The displays are ‘three deleterious effect. They Sales that this te 
(page 561). This sound was dimensional’, or topographical, created and performed in such an artificial Manner 
fabricated by mixing waveforms representing the changes in the that the real ‘human’ values of spontaneity and 
electronically. The other composition of each sound over expressiveness are being left behind in the rush to 
printouts are examples of time acquire greater degrees of technical control. This is 

—_—_ a persuasive argument, but it is worth considering 
er DRE MODE | a visual medium — the cinema — to judge if this is 
7 really the case. 

For several decades, cinema technology has 
allowed directors to shoot scenes from any angle, 4 
zoom in on detail and pan across large areas. It has 
been possible to repeat sequences of images, slow 
them down, speed them up, run them backwards, | 
and edit film so that the most unlikely visual i 
juxtapositions can occur within a split-second. It is | 
only recently, with digital technology, that music- 
makers have begun to exercise comparable 
control over sound. Most people would accept 
cinema as an expressive medium, so it is likely that 
digital music will eventually be regarded in the 
same light. At present, it is easy for some 
musicians to be over-awed by the possibilities, and 
for others to produce music that has little more 
than digital novelty value. For those musicians 
prepared to meet the challenge of electronic 
music, the 1980s should be an exciting and 
demanding decade. 
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MOTOR CONTROL 

In the last part of the Workshop s¢ series we 
looked at the construction of an interface 
that will enable us to control low voltage 
devices and considered the principles of 
motor control. Now we look at the 

software required to switch motors and 
develop a simple feedback control system. 

Microprocessor ‘ontral a extemal denieesi is NOW 
common in industry, its applications ranging from 
counting bottles on a conveyor belt to welding car 
bodies. The principles of all control systems are, 
firstly to input data from the outside world in a 
form acceptable to a microprocessor system; 
secondly to analyse that data; and thirdly to 
instigate external actions based on that analysis. If 
these three activities are repeated in a continuous 
cycle then we have a system known as feedback 
control. 
To illustrate the principle of feedback control 

let us take the example of simmering a pan of 
soup on a stove. in order to cook the soup, the 
heat supplied must be sufficient to make it 
bubble, without making it boil over the lip of the 
pan. If we were to carry out this task ourselves, 
we might initially apply maximum heat to the pan 
until the soup started to bubble and then turn it 
down until the soup was simmering. If at any time 
the soup started to boil we would lower the heat 
further. In doing this sort of operation we 
monitor the state of the soup visually; analyse 
what we see; and take the appropriate action. We 
would repeat these actions until the soup was 
cooked. A microcomputer could control the 
cooking of the soup in a similar, but not identical - 
way. The main differences would be in the way 
that the soup’s state was monitored. Whereas we 
are able to look at the soup and make an 
assessment using our experience, a computer 
system would have to use another method based 
upon easily determined physical properties, such 
as temperature. Before the soup-monitoring was 
computerised, someone would need to carry out 
initial experiments to determine’ what 
temperature corresponded to an even simmer, 

_and at which temperature the soup would boil 
over. From then on however, the computer could 
take over the job, provided that the appropriate 
devices were available to monitor temperature 
and regulate the heat. 

Motors can be controlled in several ways using 
the buffer box (see page 546) and low voltage 
output box (see page 574) that we have 
constructed. A Lego or electric train set motor is 
ideal to test the software that we shall design. We 

need only to ensure that the motor we connect to 
the output box has’a voltage rating equal to or 
greater than the input voltage from. the 
transformer. Connecting the two motor terminals 
to line 0 of the output box, we can switch the 
motor on and off using the ‘Z’ and ‘X’ keys on the 
keyboard. | 

BBC MICRO 

10 REM BBC SIMPLE MOTOR 
20 DDR=&FE62:DATREG=&FE60 
30 ?DDR=255:REM ALL LINES OUTPUT 
40 ?DATREG=0:REM MOTOR OFF 
90 REPEAT 
60 AS=INKEYS(1):REM KEYPRESS? 
70 IF AS=*Z” THEN ?7DATREG=1:REM TURN ON 
80 UNTIL AS=*X” 
90 ?DATREG=0:REM TURN OFF 

COMMODORE 64 

10 REM CBM64 SIMPLE MOTOR 
20 DDR=96579:DATREG=56577 
30 POKEDDR,255: REM ALL LINES OUTPUT 
40 POKEDATREG,O:REM MOTOR OFF 
50 GETAS:IFAS< >“Z” ANDAS< > “X” THEN 

00:REM AWAIT KEY | 
60 IF AS=“Z” THEN POKEDATREG,1:GOTO50 
70 IF AS=“X” THEN POKEDATREG,0:END 

Put Out More Buffers 
The buffer box, our first 
construction, is intended to 
protect the computer's circuitry 
from excessive input or output 
currents. Its independent power 
supply drives the output box — 
the more recent project — and . 

allows software-controlled 
switching of the 12v output 
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We can control the direction of the motor by 
connecting the motor terminals to adjacent lines 
on the output box. The diagram shows these 
connections. We shall also use a simple make/ 
break type switch, connected to line 7 of the 
buffer box to control the direction. 

In the following program a value of 1 in the. 
data register causes current to flow one way 
through the motor. Placing a value of 2 in the data 
register will cause the current to flow in the 
reverse direction. The program repeatedly tests 
line 7 and only places a 2 in the data register when 
the line is set low (i.e. the switch is closed). In this 
way, the closing and opening of the switch 
controls the motor’s direction. This is a very 
simple example of a feedback control system. 

10 REM BBC DIRECTED MOTORS 
20 DDR=&FE62:DATREG=&FE60 
30 ?DDR=127:REM LINE 7 INPUT 
40 ?DATREG=0:REM TURN OFF 
50 AS=GETS:REM AWAIT KEYPRESS 
60 REPEAT 
70 AS=INKEYS(1) 
80 IF (?7DATREG AND 128)=0 THEN DIR=2 ELSE DIR=1 
90 ?DATREG=DIR 
100 UNTIL AS="X”:REM PRESS X TO END 
110 ?DATREG=0:REM TURN OFF 

10 REM CBM64 DIRECTED MOTORS 

20 DDR=56579:DATREG=56577 

30 POKEDDR,127:REM LINE 7 INPUT 

40 POKEDATREG,0:REM ALL OFF 
50 GETAS:|IFAS=“ >THEN50:REM AWAIT KEYPRESS 

60 GETAS 
70 IF (PEEK(DATREG)AND128)=O0THENPOKEDATREG, 

~ 2:G0T090 | 
80 POKEDATREG, 1 

90 IFAS< >“X’THEN60 ~ 
100 POKEDATREG,0:REM TURN OFF 
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In addition to being able to control the direction 
of motors, we can also control their speed directly 
from the output box. This does not require 
complicated devices, such as digital-to-analogue 

converters to control the supply to the motors. 
Instead we can send pulses to the motor, turning 
it on and off in rapid succession. If we do this fast 
enough, the motor will appear to rotate 
continuously; the interval between each pulse 
determining the speed at which the motor turns. 
In order to program this, all we require is a pair of 
delay loops of adjustable length, within a larger 

repetitive structure, to determine the length of 
time that the motor is on and off during each 
cycle. 

BBC MICRO — | 
10 REM BBC VARIABLE MOTOR CONTROL 
20 DDR=&FE62:DATREG=&FE60:SPEED=30 
30 ?7DDR=255:REM ALL OUTPUT 
40 ?7DATREG=0:REM ALL OFF 
50 AS=GETS;REM AWAIT KEYPRESS 
60 REPEAT 
70 AS=INKEYS(1) 
80 2DATREG=0:REM TURN OFF 
90 FORI=1T0(100-SPEED):NEXT:REM DELAY 
100 ?DATREG=1:REM TURN ON | 
110 FORI=1T0 SPEED:NEXT:REM DELAY 2 
120 IF AS=“D’ THEN SPEED=SPEED-5 
130 IF AS=“Z’ THEN SPEED=SPEED+5 
140 UNTIL AS=*X’ 
150 ?DATREG=0:REM TURN OFF 

COMMODORE 64 
10 REM CBM64 VARIABLE MOTOR CONTROL 
20 DDR=56579:DATREG=56577:SPEED=30 
30 POKEDDR,255:REM ALL LINES OUTPUT 
40 POKEDATREG,0:REM TURN OFF 
50 GETAS:IFAS=* ”THEN50:REM AWAIT KEY 
60 GETAS 
70 POKEDATREG=0:REM TURN OFF 
80 FORI=1T0(100-SPEED):NEXT:REM DELAY 1 
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90 POKEDATREG=1:REM TURN ON 
100 FORI=1TOSPEED:NEXT:REM DELAY2 
110 IFAS=“D” THENSPEED=SPEED-5 
120 IFAS="Z” THENSPEED=SPEED+5 
130 IFAS< >“X”THEN60 
140 POKEDATREG,0:REM TURN OFF 

In this program the variable SPEED is used to 
determine the length of each delay loop. The loop 
code is such that as one delay increases, the other 
decreases and vice-versa. DELAY 1 determines the 
period when the motor is off and DELAY 2 the 
period when the motor is on. For large values of 
SPEED, the first delay is short and the second is 
long, making the motor turn more quickly. 
Smaller values of SPEED will produce longer 
periods when the motor is off during each cycle, 
making the motor appear to turn more slowly. 
The pulsing effect that the program has can be 
observed in the flicker of line 1’s LED. 

Exercise Answers 
1) Assuming that the sensors are connected to 
lines 6 and 7, and the motor is connected between 

_ the positive terminals of lines 0 and 1: | 

19 REM BBC VERSION 3.: 

OO DDR=AFERe :UATREG-=SFEGe 

80 *OOR-=<63:PFM Lites Gay iNPUT 

46 forward: |lireverse =o 

OO *OATREG=forusa 

GO POR i=l (OSMRe ie teem DELAY 

fe Peren’ UN iL OR TREG ANDiSe):.  iae 

me UAT REG) eer ce 

MO PORTei (Ce COS Ne. = BED CELA 

ie IF £S0ATREG AMD 13e)¢ 1ge Ineo 

ELSE GO07TCi ae 

iG REM CEM 64 VERSION 2... 
PO 00R=5365-°5:0AREG-S657_- 
SO POKEDUR 6GSiREM LIMES Gar INPUT 
40 Fli-l:RJ-e 
SO POKE DATREG. FW 
6@ FORI=1TOIOOO:NEXT: REM DELAY 

7O IF CPEEK COATREG I AND1Se>=i1SeTHEN?O 
SO PORE Gr leeG Ry 

SO FORi=17'CiO66:'E 1: REM DELAY 
180 IF CPEEK COATREG AMD i9e><>1SeTHENSS 
116 GoToiog 

3) Assuming that the 40 and 70 degree sensors 
are connected to lines 6 and / respectively, and the 
heater is attached to line 0: 

19 REM BEC VERSION 2.2 
20 ODF -SFE62:DATRES -crE 
eC OCR -G2:b)] LINc= Ga 
40 REPEAT 
SQ AS=INKE YS< 13 
60 ATREG-1:REl (UPI, J HEATER 
70 REPEeT 
60 UNTIL. ?DATREG ANDi929=0:REM 7O DLG 
90 2URTREG=O:REM HEATER OFF 
100 REPEAT N71. °ORTREG AND1ge .=ice 
110 UTIL Asi >": PER Ke YyPReEG= 

i@ REM CBM 64 VERSION 3.3 
€6 DOR=56579:O0ATREG=56577 
SO POKE DRR,6S:REM LINES Gar INPUT 

40 GET As 
SO ~UAlREG-1:REM [URN HEATER Gi 
BO [Ff (PEER DATREG Alibi ge >< 6 HEME 

7O POKE OATREG.O:REM HEATER OFF 
80 IF(PEEK COATREGIJAND1Se9< > ise lTHENGS 

SS iF At- ‘THEO 
af 

So Far, 
Driving wire guided toy cars 
around 

seem an enormous return on the 

effort a 

building and programming even 
these s 

introduced us to the reality of 
electronic and electromechanical 

construction, and demonstrated 
some of the problems and 
opportunities involved in making 
software interact with the real 

world 

So Good 

on the floor may not 

nd capital invested, but 

imple artefacts has 

NVIFHM JAVG Ad NOILONYLSNOO 0991 

2) Assuming that the sensor connects to line / 
and the motor connects between lines 0 and 1: 

ia 

ros 

38 

a) 

oo 

ea 

oO 

So 

oe 

Rem eo YER itl 3 c= 

DOR SPER e UA REG Hare GO 

POUR eiersPet iP © INPUT 

BPeGd=sh i fora d=] if euersce-e 

direct igan=foruarcd 

PEPEAT 

FORA TREG-O: RE’ OFF 

POR] -i1'0(' i860 -peec (e7 

7ODR i REG=direc tian 

190 FORI1=110<ceecd: hex 
11@ UNTIL <20ATREG ANO1lee)=0:REM SiWitcH 
126 FORI=17TO10@0:MENMTIREM DELAY 
iS@ REM TEST FOR OVER PAD 
149 IF (°0ATREG 9110129) -87HE DaTReG-a: 

ENG 

156 Ret Reverse SLY 

168 66660 -Cidi = eet ign = 6047 ee: GUilUGe 

10 

eu 

a0 

ae 

ou 

GE 

fo 

ou 

ae 

100 

110. 
leo 

iso 

140 

PEM Cem 64 VERSION 3.2 
DOR =565 4° 0ATREG=5657/ 
PORE OOR,.127:REM LINE 7 iNPUT 
GP -30:Fl- 1 -RV-e 
DR=FW 
POKE UATREG 9: REM GFF 
FORI=17T0°100-SP>: NEXT 
POKE DATREG,OR 
FORI=170SP:HEY7 

IF (PEEK (OA TREG) AND 129) < SO THENGO 
POR1-1701000:HE> 7: REM DELLA, 
LF (PEER (COR REG AND les) -8THENPOKE 
DATREG 9: ERD 
REM REVERSE GACK SLOWLY 
6P-2:0R-RV:GoTose 

4) Assuming that the first switch is on line 6 and 
the second is on line 7 

if 

20 

Rs 

46 

o0 

eo 

7o 

eb 

se 

ib 

eb 

3u 

a0 

ou 

a8 

Oo 

oo 

20 

REP BBO VERSION 2.4 

DOR =s8FEECIOAIREG-GFEGuU: DISTANCE =1 

JOUR -b> 

REFER? UNTIL. DATREG ANDiGa 3H 

JDM IFEC- | 

Tiye eo Rey Siae iter 

PEPER UNTIL -OR REG Sib iee) -o 

PRInNt sPEEU- DieiAlie = ihe, igo 

yUG TREO ee 

REM Ceid 64 VERSION 3.4 
DOR =965 9:00 1 REG -5657-< 

POKE ODR,63 ~ 
IF (PEEK (DATREG )AND64 >< >@ THENS@ 
POKE DATREG, i 

TeTiiRehl SIAR] {ier 
IF (PEEK (DATREG ANDieG)< O81 HENee 

PRINT "SPEED="O5S7(¢CTI1-T),60) 

POKE DATREG.© 

rUS-1 
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~ CHARACTER © 
~FORMING 

We have looked at how to define your own 
characters on the Commodore, here we 
provide two programs for the BBC Micro 
and the Spectrum. Both machines have an 
area of memory reserved for the user’s 
characters, which makes _— character 
generation a far simpler exercise. 

The Spectrum S approach to user-defined 
characters is typically matter-of-fact: 168 bytes at 
the top of memory are aedicated by the operating 
system to the user’s character definitions (though 
this memory can be used for other purposes, such 
as storing machine code programs or data). This 
space allows 21 character definitions to be stored, 
and the operating system attaches a CHRS value in 
the range 144 to 164 to each definition. The 
characters so defined are regarded by the machine 
as the characters ‘a’ to ‘u’ in graphics (G) mode. 
The user-defined graphics (UDG) system 
variable (address 32600) points to the first byte of 
the dedicated memory area, but you don’t have to 
do complicated sums with this variable to find the 
Start address of a character definition. The 

Spectrum 

command LET address=USR “A’ returns the address 
of the first byte of the definition of the character 
inside the quotes. 

Comparing the length and structure of the 
Commodore and Spectrum lists demonstrates the 
relative ease of use of the Spectrum’s methods. 

The program is a straightforward translation of 
the Commodore version (see page 572). The 
Spectrum’s normal cursor keys (shifted 5, shifted 
6, etc.) control the edit cursor, and the unshifted 6, 
i and 8 keys are the command keys —togglea cell, 
change the edit character, and place a character in. 
the text window. The exclamation mark is the exit 
command. 
When you have defined your new characters, 
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you can SAVE the UDG area by the following 
command: 

SAVE “udgfile’ CODE (USR “A”), 168 

and reload it thus: 

LOAD “udgfile” CODE 

The BBC Micro’s treatment of ieendepned 
graphics is similar, at first. glance, to the 
Spectrum’s. The 256 bytes between &0COO and 
&OCFF are reserved for the definitions of the 
ASCIlI-coded characters 224 to 255. If the 
character set is imploded (see The BBC Advanced 
User Guide, page 136) then those definitions are 
also applied to the ASCII codes 128 to 159, 160 to 
191 and 192 to 223. In the exploded state, the 
entire printable character set (from CH RS (32) to 
CHRS(255)) can be redefined, but at the cost of user 
RAM. For most purposes, a maximum of 32 
special characters should suffice. | 

The program functions are the same as in the 
Commodore and Spectrum versions. The arrow 
keys control the cursor, and the function keys, f1 
to £3, access the toggle, redefine and place 
commands. As before, the exclamation mark, ‘!’, 
is the program terminator . 

Hie with 

BBC Micro 

Notice the OS calls at lines 70 and 180: these 
disable and enable the COPY functions so that the 
arrow keys can be used in the program; if you quit 
the program other than through the ‘!’ command, 
you must type *FX4,0 at the start ofa Lnew line to re- 
enable the editing keys. 

The BBC Micro does allow you to use VDU23 to 
define characters, but in this case it is simpler to 
calculate the relevant addresses and then PEEK and 
POKE them individually. 
You can SAVE your special characters thus: 

“SAVE “filename’ OCOO OCFF 

and reload them thus: 

~*LOAD“” 

IAN McKINNELL 
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HOT 
PROPERTY 
Cheetah Marketing is a company with a 
good track record in producing add-ons for 
the Sinclair Spectrum — the Sweet Talker 
synthesiser is the most successful to date. 

e RAT, a remote-controlled joypad that 
uses infrared waves, is the company’s latest 
achievement. We look at this addition to 
the home computer menagerie... 

Serious arcade games players tend to be very 
concerned about anything that significantly 
affects the speed and quality of their play — 
especially if it has a noticeable impact on the final 
score. For this reason, the way in which a game is 
controlled is a matter of great importance. With 
games controlled from the keyboard, the major 
concerns are the choice of control keys and the 
ease with which these can be used. Consequently, 
software writers must pay particular attention to 
this sort of detail. With external controllers, like 
joysticks, the design of the hardware tends to be 
the crucial factor. 

The flexibility of a joystick — its freedom of 
movement, how quickly it reacts to your touch, 
the speed at which the game responds — is its 
most significant design consideration. But the 
designer is often hampered by the limitations 
imposed by the nature of a joystick itself — the 
length of the connecting lead, the size, shape and 
position of the controller, and the position of the 
fire button(s). The latter detail, for example, 
often favours right-handed players. Although 
joystick manufacturers have tried to develop 
designs that overcome some of these drawbacks, 
none have been as successful as Cheetah 
Marketing’s infrared remote joypad for the 
Sinclair Spectrum. 

Cheetah has called its joypad the RAT. The 
name is said to be an abbreviation for ‘remote 
action transmitter’, but seems to be a play on the 
word Mouse, which is applied to the hand-held 
controllers used with Apple’s Macintosh and 
other machines. The RAT looks like a slightly 
elongated phaser weapon from television’s Star 
Trek series. It is long, flat and grey, with a blue 
circular control pad, the Cheetah logo and a 
bright orange fire button. There are two infrared 
transmitters extending from the front of the unit. 

en you first hold the RAT and press the fire 
button you almost expect flashes of blue flame to 
leap from it. 

The system also includes its own interface, 
which plugs into the edge connector at the back 
of the Spectrum. This box has an expansion port 
of its own for further add-ons. There is.a single 
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Radiating Light 
Infrared radiation — having alonger wavelength than visible 
light, but shorter than radio waves — is produced tn the 
transmitter by Infrared Emitting Diodes (IEDs) when an electrical 
current in a tiny chip of gallium arsenide excites the molecules 
causing photons to be released. In the receiver, conversely, an 
electrical current flows in the IED when infrared light falls upon 
ihe gallium arsenide. When the control buttons on the RAI are 
pressed, therefore, the two transmitter IEDs emit coded pulses of 
infrared in a broad beam, triggering the receiver directly or after 
reflection in the room : 

CHRIS STEVENS 



infrared receiver on the front of this unit for 
communicating with the RAT. 

The package has a sheet of instructions that 
explain how the joypad is used and what games 
can be played with it (any software that is 
Kempston joystick-compatible). With great 
foresight, Cheetah has included routines in BASIC 
and machine code that enable you to incorporate 
RAT control in your own games. : 

The instruction sheet claims that the RAT can 
be used at distances up to 12 feet by aiming ‘in the 
general direction of the computer’. Movement is 
effected by pressing lightly on the blue control 
pad. There are eight small ‘bumps’ on the 
periphery of the pad, and pressing on or near one 
of these indicates the direction required — N, 
SW, and so on, rather like the directions on a 
compass. While one hand holds the RAT and 
controls the direction of movement on the 
screen, the other hand can be used to press the 
fire ‘button’. Because of the design of the RAT, it 
makes no difference which hand performs each 
task, so the joypad works equally well for left- 
and right-handed players. The transmitter 
requires one PP3 battery, which fits into a small 
space at the back of the unit directly below the | 
blue control circle. ee | ae 

Once the interface box is connected, the 
transmitter unit has been fitted with a battery and 
a game requiring joysticks has been loaded into 
your Spectrum, then you are ready to play. 7 
Because there is no visible sign that the 
transmitter is working until you can see 
movement on the screen, you might find yourself 
sticking as close to the computer as you would 
with any other joystick. There is a certain 
reluctance to believe the claims of a 12-foot 
control distance. But when you realise that the 
RAT really works, you will want to experiment to 
see how far it can go. | 

In fact, the remote action transmitter works 
extremely well at distances even slightly over 12 
feet. And it doesn’t have to be pointed in the : 
general direction of the computer. The RAT 
works when pointed straight up at the ceiling, 
down at the floor, over your back or sideways 
(although it is slightly difficult for you to see what 
you are doing when the transmitter is pointed at 
odd angles). Clearly, the Cheetah RAT gives a . 
games player a tremendous freedom to move 
around. The biggest drawback, however, is that it 
has only eight positions of movement — up, 
down, right, left, and intermediate points. It _ 
would be better to have more control than this. 

The fact that the RAT has no moving parts 
makes the unit less prone to wear and tear than 
standard joysticks, so it should last a long time. In 
fact, it comes with a year’s warranty. At £29.95, 
the Cheetah RAT costs only slightly more than 
most other joysticks plus Interface 2. (Of course, 
if you already have Interface 2, this is not much 7 
consolation.) But its play allows much more 
freedom of movement and far better control than 
most joysticks. 3 

CHRIS STEVENS 
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Mixed Reception 
The original keyboard of the long-awaited IBM PC Junior was 
noted mainly for the low quality of its appearance and 
engineering, but it was also the first microcomputer with infrared 
linking between keyboard and processor 
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FILE PROTECTION | 
Computer files stored on tape or disk can 
generally be accessed by anyone who knows the 

name of a particular file or can get a catalogue of 

the files available. If a file contains confidential 

information (a company’s accounts, for example, 

or the source code of a commercial program) it 

must be protected from unauthorised users. The 

simplest method involves locking the disk or tape 

away in a secure location, and some companies 

spend fortunes on this kind of security for their 

computer systems, recognising that the 

information contained is their most precious 

resource. Physical protection, however, is 

compromised by the need for people to use the 
system, and disks, tapes and security passes can go 
astray. Against these failures, therefore, the 

creator of a confidential file has to provide some — 
form of built-in file protection. 

A large multi-user system may provide the first 
level of protection by requiring users to log-on 
with an authorised user code and a user-defined — 

password. The user code (sometimes called a PPN 

— programmer project number) determines the 
user’s system privileges, including the level of 

access permitted. Each user has an individual file 

directory area on disk, and the proper 
combination of privilege and password is required 
to access other users’ directories. System 

personnel, such as operators and programmers, 
often have common PPNs and passwords — like a 
hotel’s passkeys — that can give access to the 
entire system. Because of the power this gives, and 
because the codes are often unimaginatively 

chosen, cracking this protection is a hacker’s 
prime objective (see page 486). : 
A more widespread problem than that of 

breaking into private data files is software piracy 
— the illegal copying of commercial program files. 
Software publishers have tried many forms of file 
protection, only to find most of them being broken 
as soon as they are introduced. The earliest file 
protection techniques included hiding data in 
normally unused spaces on a disk or tape. This 

- method confuses the computer’s operating system 
so that it can read the file only when the program is 
running, and cannot copy it. A more recent 
approach to this problem involves serialising disk- 
based software. The first time a program is run on 
a computer, a serial number associated with that 
particular computer is added to the file. From then 
on, that file — and any copies made from it — will 
work on that machine only. 

FILE SERVER 
In a network, one of the computers .is sometimes 
set aside to handle file accesses for all the other 

terminals on the network. In such a system, all - 
communications from and to the terminals, 
printers, disk drives and other peripherals are 
treated as separate files, which greatly simplifies 

the controlling computer’s task. This computer is. 

called a file server, and its only task is to control the 

movement of files between nodes on the network 
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and the storage unit. 
The file server is called by a node when a user 

needs a particular file (which could be a data or 
program file on disk, or a communication with a 
printer or other peripheral). If the file is open to 
that user and not being used by another node, the 
file server sends the data. The file is massaged, or 
altered, by the user and returned to the file server, 

where it is updated to incorporate any changes 
and then re-saved. : 

The Econet system is a low-cost and popular 
example of this kind of network, and normally it 
allows a BBC Micro as the file server. Users of the 
early versions of the system, however, found that 
more processor power was needed to run a 
network of any size. The Acorn System 3 was 
generally used as a stop-gap until the 6502 second 
processor for the BBC became available. 

Joining Forces 
The Acorn Econet joins up BBC Micros in a bus-type network. 
The bus may be a simple twisted-wire pair, and one micro is 
dedicated as the file server , 

FILE TRANSFER 
A file is usually created within a computer and 
then stored in some peripheral storage device. 
Copying the file between them — or to another 
node in anetwork, or to some distant system — are 
the commonest examples of file transfer. The 
problem in these vital communications is the 
recurring one of format compatibility. All 
communicating devices have their own 
requirements (or protocol) concerning the 
transmission rate, parity, and connect/disconnect 
signals. These protocols are often specific to the 
device, so file transfer is rarely a simple matter. 

Different manufacturers and organisations 
have made various attempts at standardising these 
formats, but their solutions have usually added to 
the problems. The recent growth in national and 
international telephone data networks, however, 
is gradually imposing consistency. Within a 
network, the simplest answer is usually to make all 
transfers through the network controller (file 
server), which can accept a file from any node and 
pass it to any other node in the network in the 
appropriate format. 
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~ VARIATIONS 
~ON ATURTLE — 

As it stands, this procedure will draw a square with 
sides of 50 units in length. However, it would be — 
far more useful if the square could be drawn to any 
chosen size — to do this, we must input the desired 

Our examination of the L0Go language has 
already shown us how procedures can be 
defined to carry out sequences of 

commands, Such procedures are more value. To change SQUARE to accept an input, usé 
flexible if the user is able to input different the editor to replace the fixed value of 50 with the 
values that will alter the effect achieved variable “SIDE and add :SIDE to the title line. Our 
when the procedure is called. procedure will now look like this: 

In LOGO, a word. cag 
example — may Ye used in three different ways. To 
distinguish between these, LoGo uses three 
different notatidns: SIZE, :SIZE (pronounced “dots 
size’), and “SIZE 5 (‘quotes size’). As we have already 
seen, if LOGO) meets the word SIZE, oe 
preceding a ctuation, it takes it to bee procé square will vary. \ 
name and |, carry out the Squence/ ‘of LePs ec oe what happ pens when you type 
commands 1 1 the SIZE defini ion. “SIZE i is Y séd to SQUARE 30: “Lo \the definition of 
indicate the; ‘value held-ir fhe variable nafne — if title | lat 
LOGO encopnters“SIZE it wi ieveéthe val iis i ed “SIDE. The 
associated tie name. “SIZE is uséd 40 rthe-input.line (irith 
variable namés and procedures, | buft in idicates that 

al 
i g to the name ite , al aud not to an, 

uses this as/the in NX 
“SIDE is Jusod O \ 

ae consistent ts fO\it. If Another coe also uses \ 
7 nands \ E | /namie for an input it will us¢ a different Ne 

is hetefore referred rj as a local Fo 

inpyts with shbprdcedures The Sf: 
re we give herelis gur solution to / 

ad nAvelaet mn 5 ent (your answer 

ent) can be modified So that os ss 
a | 

~~ LE TRI: ‘BIg fof 

example - vas reed extra int Ql denrintion beet — END nn bh 
can be used. The word FORWARD on its own is £ 
meaningless — a value must be assigned to it 10 sun a SIZE a 0] 
before LOGO can carry out the command. If END 
variable names are included in our procedures;we : fA. 
can input any required value and thus vary the “\_TOTRI:SIDE  / 
effect obtained when the procedure is called. “SSREPEAT 3 [Fp SIDE RT 120] 
Let’s consider the procedure we defined in a END Nw 

previous instalment to draw a square: _ Here, we ord used three different variable names 
? S eBlc: “SIZE and “SIDE. We could have used the 

~ TO SQUARE same name for all three, as variables are local tothe | 
REPEAT 4 FD 50 RT 90] 7 _ procedures in which they are used, a this could 

END have been confusing. 
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_ To see how these procedures work, let’s see 
what happens if we type HOUSE 30. Loco reads the 
input line and assigns the value 30 to the variable 

“BIG in HOUSE. The first line of HOUSE is therefore 
now equivalent to SQUARE 30. The variable “SIZE in 
SQUARE is, in turn, assigned the value 30. SQUARE 
is now run, with FD :SIZE becoming FD 30. A similar 
procedure is followed when TRI is called. 

_ Now try adapting the procedures for drawing : 
the five-by five board so that BOARD takes the size 

/ i new a 
so that it will'\draw 
by-five). The re will b | 

number of squ ‘reeti a pe ee 

GLOBAL \ VARIABLE : 

should be used sparingly. . 
The command MAKE is used toa 

global variables. MAKE “SIDE 3 assigns som 
of the variable “INSIDE. MAKE “SIDE ‘SI DE 
increases the value of “SIDE by one. The ex 
meaning of the notation in this second example is: 
find the value of the variable “SIDE, add one, then 
assign the result back to the variable named “SIDE. 
In each case, MAKE requires two inputs — the name 
of the variable, and the value to be assigned to that 
variable. — 

To sum up the programming features we have 
covered in this instalment of the Loco course, 
we've designed some procedures for drawing 
spirals. The main procedure is named EQSPI. This 
requires three inputs: the initial length of the line to 
be drawn, the angle that must be turned at each 
‘commer’ of the spiral, and a scale factor by which 

the value 

| 

594 THE HOME COMPUTER ADVANCED COURSE 

makes ae more. difficult and so icy 

S12) | values to. 

the initial length must be multiplied to produce the 
spiral effect. Different sets of inputs may be used 
to achieve different effects — we tried 70 283 0.95, 

70 143 0.95, and 20 243 1.05. Try other sets of 
numbers and see what happens. 
NOWRAP is a new command. This stops the 

turtle “wrapping around’ the screen — when the 
turtle reaches the screen boundary the procedure 
will stop with an ‘out of bounds’ error message. In 
many cases, the wrap-around effect can give 

actor), then tu 
finally alters the scale factor. The length of the 
lines drawn either \ Increases or decreases, 

pending on whether 
ter less than 1. The le 

dure going for a long 
enough, p ress Control-G (or 

dure ru nning. Most of the 



Exercise Answers 
1) Tangram Puzzies 

Man Bowing 
TO BOWING 

MOVE! TRIi MOVE2 PARI MOVES TRIS MOVEd 
TRIS MOVES TRI1 MOVES TRIl2 MOVE7 SQUARE 

The man sitting, the man bowing, and the cat 
shapes, all use the other side of the parallelogram 
piece from that used by the dog in last week's 
example. In order to turn a piece over in LOGO, you 
simply change all RIGHT turns to LEFT turns. So 
instead of: 
10 FAR 

REPEAT 2 [FD 25 RT 45 FD 35 RI 1395] 

END 

we will sometimes need its ‘other side’ given by: 
1G PARI 

REPEAT! <¢ [FO 25 LI 45 FD 35 LI 135) 
END 

All the other piece procedures are exactly as given in 
the last part of this course 

TO RUNNING 
MOVE! TRII MOVE2 FAR MOVES [RI3 MOVE4 
TRIS MOVES SQUARE MOVES TRIi MOVE? ITRi2 
MOVES 

END 

TO MOVEI 
LT 45 

END 

10 MOVE2 
PU FO 25 Ri 135 FD 17.3 Li 45 FD 

END 

TQ MOVES 
FU FO 75 RI 90 PD 

END : 

TQ MOVES 
FU RI 70 FD 25 RI 70 FD 

END 

TO MOVES 
PU FD SO RI 135 FD 38 LI 135 PD 

END 

TO MOVES 
PU RI {85 FD 21 RI 135 FO 25 Li 70 FO 50 
Lt 20 FO 25 RI 70 FD 

END 

10 MOVE? 

PU FD 25 Ri 135 FD 71 RI 48 6k 35 POD 
END 

TQ MOVES 
PU FD 25 .! 70 FD 25 Ri 45 FO l7.5 LI 45 
FD 25 RI 135 FD 

END 

Man Sitting 
TO SITTING ~ 

MOVE! TRI11 MOVE2 TRI2 MOVES TRI3 MOVE4 
TRI1 PARL MOVES SQUARE MOVE6é TRI3 MOVE7 

END 
TO MOVE! 

LT45 
END: 
TO MOVE2 

PU FD 25 LT $45 FD 17.5 RI 70 PD 
END 

TO MOVES 
PU BR is Li vo FO 

END 

TQ MOVES 
PU FD 50 RT 45 FO 25 RI 70 PD 

END 

TO MOVES 
PU FD 25 LT 45 FD 35 LI? 45 FD 

END 

TO MOVE 6 
PU BK SO LT 70 PD 

END 

TO MOVE? 
PU BK 21 RI 135 BK SU RI 70 FO 35 LI 28 
PD 

END 

MOVES 
END 

TO MOVEI 
LT 270 

END 

TQ MOVE2 
PU FD 

ENO 

TQ MOVES 
Pu OLE 

END 

TO MOVE4 
_ PU RT 
END 

TO MOVES 
PU RI 

END 

TO MOVES 
PU RT 
FD 

END 

TO MOVE? 

END 

10 MOVES 
PU LT 
LT 45 

END 

Cat 
TO Cal 

MOVE! TRI3 MOVE2 SQUARE MOVE3 TRI1 MOVE4 
TRI1 MOVES TRIS MOVES PAR! MOVE? [Ri2 
MOVES 

END 

1O MOVE 

END 

TO MOVE2 
RT 170 

END 

TO MOVES 

20 

45 

70 

20 

70 

33 

45 
BK 

RT 

FD 

FD 

FD 

FD 

RT 

FD 
20 

135 FD 30 

So LI [35 

90 LI i135 

50 LT 135 

20 RI 45 FD 7.5 RI 45 BK 35 

135 FD 7.5 LT 45 FD 55 RT 45 

36 RT 45 FD Sé lt 135 FD 3s 
PD 

PU FD S30 RT ¥O PD 

PD 

BK 30 PD 

PD 

FO 3 RI 70 PD 

FU Ri 70 FD 25 Li 20 PD 
END 

TO MOVES 
RT 180 

END 

TO MOVES 
PU RE 70 FD 25 LI 80 FD 30 RI 45 FD 50 
RT 70 

END 

TO MOVES 
LT 155 

END 

TO MOVE? 

PD 

PU LT i60 FD 335 PD 
END 

TO MOVES 
PU FD 35 Li 45 FD 21 KI 135 FD 

END 

Man Sitting 
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FINE TUNING 

Our course on program design has so far 
concentrated on ‘structured’ programming 
methods. Using the techniques we have 
suggested will make your programs easier to 
design and debug, but will do nothing to 
make them run any faster. Here we consider 
ways to increase program execution speed. 

Structured programming and good program 
layout are techniques that make programs easier to — 
use, but do not improve program efficiency. ‘To 
make programs run faster and use less memory 
space, it is often necessary to sacrifice clarity in a 
program’s design. So we should bear in mind, 
when ‘tuning up’ a piece of code, that almost 
anything that is done to make it faster will 
invariably make it more difficult to read, 
understand and debug. 

The inherent slowness of interpreted eevee 
like BASIC means that there will be times when 
programs will run at an unacceptable pace and 
must be speeded up. The most efficient way of 
speeding up a BASIC program is to compile it. 
However, very few micros support a true BASIC 
compiler — there are disk- and cassette-based 
compilers on the market, but most of them 
support only integer BAsic, and may require 
special formatting of your program before 
compilation. Compiling is a slow process, 
especially during program development, and 
especially when the system is cassette-based. ‘The 
compiler will occupy user memory, and the more 
comprehensive its facilities, the more RAM it will 
take from the user progean area. In general on 
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home micros, compiling is recommended only for 
fully tested and debugged programs. 

File accesses slow programs down more than 
any other single cause. In a program that 
frequently reads from and writes to disk or tape (a 
database program, say) delays are inevitable. 
Access to a record in a random access file on a 
floppy disk takes an average of about a quarter of a 
second. Access to data in serial files takes longer 
(and varies with the length of the file) and tape 
accesses are considerably longer. If these delays 
are causing problems, it may be possible to reduce 
the number of accesses by reading in more data at 
once and storing it in RAM, and by ‘saving up’ 
updates to files until the end of the session. 
Interactive programs often cause problems 
because the user is left staring at a screen for 
several seconds. A partial solution here is to re- 
organise the program so that files are read and 
written while the user is busy doing something else 
(reading a screenful of instructions, for instance). 

Another cause of slowness is real arithmetic. 
Real numbers are ones with decimal places 
(integers are whole numbers). Because of the 
decimal part, fetching a real number from memory 
and performing an arithmetical operation on it 

_ requires many more machine cycles than doing the 
same for an integer. In programs with a lot of 
arithmetic, it pays to replace all the variables 
involved with integer variables (e.g. SUM should be 
replaced by SUM%). Savings of around 20 per cent 
can be achieved for even moderately numerical 
programs and ‘number-crunching’ applications 
stand to gain by as much as 50 per cent. 

Designing a faster algorithm is one of the best 
ways of speeding a program up. Some sources of 
algorithms have already been recommended in 
this course. Try these, and be on the lookout for 
those published in computer magazines. 
Otherwise, devising algorithms is a matter of 
creativity and insight. Basics usually have a wealth 
of inbuilt functions (such as INSTR, SGN, LOG, and 
so on) that are very fast. This speed is a result of 
their being written in machine code and using the 
best algorithms available. It is often worth 
checking the manual again to see what inbuilt 
functions are offered before coding your own 
version. User-defined functions, implemented 
with the command DEF FN, also run quickly. This 
command is most useful in programs with 
repeated calculations or a repeated sequence of 
string manipulations, where it can replace a 
subroutine call, which is much slower. 

Writing routines in machine code generally 
makes them run faster. ‘This is because interpreted 
languages translate program lines into machine 



code as they are encountered while the program is 
running (they do not do it particularly efficiently, 
either). Writing in machine code avoids this 
translation process. Unfortunately, writing 
Assembly language programs is much more 
difficult than writing BAsic, and the cost in time 
and effort may not be worth the eventual saving. 
However, some programs — those using animated 
graphics, for instance — would not work as 
intended if they were written in BAsic alone. 

There are many other ways of making smaller 
savings in processing speed. Use a variable instead 
of an actual number (e.g. MAX rather than 267.5) 
for faster access to values, especially in loops. Use 
different letters to start variable names, and spread 
these initial letters evenly throughout the 
alphabet. Use multiple statement lines (if that is 
possible) and create a sizeable interval between 
line numbers (such as 10). With FOR... NEXT loops, 
if the interpreter permits, leave off the loop 
counter variable (for example, use NEXT rather 
than NEXT LOOP). Inside a loop, try to avoid 
calculating the same value over and over again. 

Instead, calculate it outside the loop and 
incorporate it as a variable. 

SAVING SPACE 
Integer arithmetic not only saves time, it also saves_ 
space. Where it may take four or five bytes to store \ 
a real number, it need take only two to store an 
integer. This represents a major saving, especially 
where large arrays are involved. Other 
improvements to the speed of a program will also 
save space: using inbuilt or user-defined functions 
saves code, as does writing in Assembly language 
and using multiple statement lines. Compiling 
tends to increase the size of smaller programs and 
only saves space for large ones. 

Removing REM statements is an obvious space- 
saver, and using shorter strings of text for prompts 
also helps. Putting large blocks of text into files 
that are stored outside the program keeps them 
out of the way when they are not needed 
(instructions and ‘help’ files are the biggest 
burdens). Remove as many spaces as is legal 
within a line, and use shorter line numbers and 
shorter variable names. If an array needs to be 
dimensioned but its exact size is not known, don’t 
just guess a convenient round number. Instead, 
leave it until the information needed is on hand 
and then dimension it with a variable, like this: 

10 INPUT“How many instances are in this 
category?”;INSTANCES% 

20 DIM ARRAY% (INSTANCES %) 

This is called ‘dynamic dimensioning’ and it is 
something that BAsic offers and most other 
languages don’t — so make the most of it! 

_ Another technique involves increasing BASIC’s 
memory allocation in RAM. This can be done by 
using commands like HIMEM. What these 
commands usually do is to change the area in 
RAM that is available to BAsic programs and 
variables. The normal use for this is to store 

machine code programs in a safe place where they 
won't be overwritten, but the same command can 
be used to access extra space from that normally 
reserved for the screen memory. If it does not 
matter what is appearing on the screen, then this is 
a good way to get an extra kilobyte of RAM. If it is 
not possible to change HIMEM, the screen memory 
can still often be used by PEEKing and POKEing 
directly to the memory locations reserved for it. 

_ Tfall else fails and the program simply will not fit 
in the space available, many BAsics have a CHAIN 
command that allows one program to pass control 
to another. Some BAsics allow use of the COMMON 
command; this passes particular variables and 
their current values to the next program. CHAIN on 
home micros (if it exists at all) is usually a very 
simple command that enables all or none of the 
variables from the first program to be passed to the 
second. | 

If programs are written in a structured way, the 
individual subroutines should be capable of being 
written and tested independently. Their execution 
can also be individually timed. Write a simple 
timer like this one: 

100 REM Use this first section to set any variables 
105 REM that the routine will need (don't forget 
110 REM to dimension arrays and fill them with 
115 REM realistic data too if the routine uses any). 
120 REM This program is in BBC BASIC and TIME 
125 REM is a pseudo-variable that holds a value in 
130 REM hundredths of a second, generated by the 
135 REM system clock | 
200 START=TIME 
210 GOSUB 2000:REM The routine being timed is 

called here. | 
220 FINISH=TIME 
230 PRINT “Execution took”; (FINISH-START)/100; 

“seconds.” | 
240 END 

With this routine it is possible to experiment with i 
different algorithms and other ways of increasing 
speed. 
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Index Links . 
The symbol BASE — initialise 
as $0500 — is the address of the 
first byte in a table of values. The 

- indexed addressing mode 
instruction LDA BASE,X takes 
the value of BASE, and adds to it 
the contents of the X register, to 
produce the actual address of 
the byte whose contents are 
loaded into the accumulator. If 

this instruction is inside a loop 
of which X is the counter, then 
the entire table can be 
accesssed, byte by byte, in 

sequence. Since X is a 16-bit 
register, the loop could range 

over the entire memory space 
($0000 — SFFFF in an eight-bit 
system such as the 6809) 

SYMBOL TABLE 

| VALUE | SYMBOL 
$0500 BASE 

KEVIN JONES 

CHANGE 
OF ADDRESS 

spaenansienaicannsaraneranaac 

At this stage in the course, we 
detailed look at how the two index registers, 
X and Y, are used in indexed addressing. 
We illustrate the value of indexing by 

computer was that by storing the program in the 
same place (and in the same form) as the data on 
which it was to operate, the program could modify 
itself as it was running. The major use of this 
feature was not to modify the actual instructions 
themselves but to modify the addresses where the 
instructions got their data. Imagine the problem of 
having to access a table of several thousand 
numbers, and having to give separate instructions 
for each because each instruction could refer only 
to the one unchangeable address. 

This problem was greatly alleviated with the 
introduction of the concept of address 
modification. In this way, the same instruction 
could be repeated any number of times and be 
made to refer to different addresses where data 
was stored by using the changing value in a register 
to alter the address. We use this sort of concept all 

_ the time in BAsIc programs. For example: 

FORI=1TON 
PRINT TABLE(|) © 
BEXT ISS 

In this case, the same PRINT instruction refers to 
different data each time it is used by modifying the 
basic data item (TABLE) using an indexed value (1), 
which is changed each time it is used. 

The fundamental principle of indexed 
addressingis that the contents of the index register 
are added to the base address given in the 
instruction to produce the effective address — the 
memory location that is actually accessed. If this 
instruction occurs within. a loop, then the 
adjustment to the index register (usually an 
increment or decrement) can be performed within 
the loop as well, and thus we can easily access a 
whole table of values. _ | 

The 6809 not only has two registers for this 
purpose, the X and Y registers, but also two further 
registers — S and U. In special circumstances it is 
possible to use the program counter as well. To 
make the whole subject of indexed addressing 
even more complex, there are a variety of different 
modes of indexing. However, these do cover 
nearly all programming requirements. We shall be 
using indexing, in one form or another, in all our 
programming from this point, so there will be 
plenty of opportunity for you to familiarise 
yourself with the variety of ways in which it is used. 
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Indexed addressing is indicated by adding ,X to 

the operand field — if the register used is the X 

register, of course. So the general form of an 

indexed instruction is: 

Opcode  Offset,Index Register 
LDA TABLE1,X 
STA TABLE2,Y 

In many situations the offset is zero, in which case 
it can be omitted. For example: 

Opcode _ ,|Index Register 
LDA ,X 
STA ,Y 

Let’s see how this works in practice. Suppose we — 
have a table of 64 eight-bit values stored at $3000 
and we want to access the bytes in sequence. We 
can define the base address and reserve space for 
the table using the directives: 

ORG $3000 
TABLE RMB 64 

These instructions set the program counter to 
$3000, define TABLE as beginning at $3000, and 
reserve the next 64 bytes. We now access the bytes 
using the next piece of code: the new ORG directive 
means that our code will be stored in a different 
part of memory from our data. When you start 
using indexed addressing this is a sensible 
precaution against a loop getting out of control 

and causing your program to overwrite itself. 

ORG $1000 
COUNT — FCB 0 

LDX #0 
LOOP LDA . TABLE,X | 

We now alter the value in the X register: 

| TFR X,D 
ADDD #1 
TFR D,X 

This is an awkward way of incrementing X, 
although it can be useful when we are 
incrementing or decrementing by numbers 
greater than two. We will look at the alternatives 
to the method used here later in the course. The 
last fragment of code increments the count and 
checks to make sure that it is not 64 (in which case 
the program is finished and there is no need to 
loop again): — 

INC COUNT 
LDB COUNT 
CMPBts«d#G4 
BLT LOOP 

There are a number of ways of improving the 
efficiency of this code. One of the most useful 



ways is to use the auto-increment mode. The 
instruction: 

LDA TABLE,X+ 
will cause the value in X to be automatically 
incremented after it has been used. If we have a 
table of 16-bit values then we use: 

LDA TABLE,X++ 
which causes the X register to be incremented by 
two. Our original program loop is now 
considerably streamlined: 

LOOP LDA TABLE,X+ 
INC COUNT 
LDB COUNT 
CMPB #64 
BLT LOOP 

Another useful alternative to the original method 
we outlined is to step through the table of values in 
the reverse order, perhaps using the auto- 
decrement mode. This has the advantage that the 
final value in the X register is zero, and as auto- 
decrement of an index register automatically sets 
the flags in the condition code register, we can test 
directly for the end of the loop without having to 
use a CMP instruction. The same effect can be 
obtained by loading the index register with a 
negative value and incrementing this until zero is 
reached. Every time the auto-increment 
instruction is obeyed, it sets the condition code 
register flags to show the results of the increment. 
If a zero result occurs, for example, the zero flag is 
set; if a carry occurs, then the carry flag is set, and 
SO on. 
We should remember, however, our general 

rule that it is always best to make tests on the 
accumulators only. Also, since most programs are 
likely to have some processing between the 
increment/decrement instruction and the test 
instruction it is unlikely that the condition code 
register will remain unchanged between the action 
and the test. 

If we decide not to step backwards through 
the table, it is still a good idea to make the count go 
backwards so that we can end the loop at zero. A 
point to watch with the auto-decrement 
instruction mode is that the decrementing is 
performed before the address calculation, 
whereas in auto-increment the register is 
incremented afterthe address has been calculated. 
Thus, if X contains 7 and TABLE begins at $1000, 
then the instruction LDA TABLE,X+ will load the 
accumulator from address $1007 and then 
increment X from 7 to 8. LDA TABLE,-X (note the 
minus sign comes before the register name), on 
the other hand, will decrement X from 7 to 6 and 
then load the accumulator with the value from 
address $1006. 

_ Stepping through the table backwards, and 
keeping the count in the B register for 
convenience, our loop will now be: 

LDX #64 
LDB #64 

LOOP LDA  TABLE,-X 

DECB 
BGE LOOP 

The first of our two example programs shows a 
straightforward loop through a table of eight-bit 
values, in which we count the number of negative 
values. The count in accumulator B is also used as 
the offset from a fixed value in X. The second 
program shows both the index registers being used 
together, with a zero offset. It makes a copy of a 
character string from one location (possibly an 
input buffer) to another location where it will be 
stored. The string is of unknown length (although 
it will be less than 255 bytes) and will terminate 
with a Return character. When it is stored, the 
Return character will be deleted, and a byte 
indicating the string’s length will be put at the 
beginning. 
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Winning Stages 
At any stage of the game, the 
players may consult the racing 
programme (top picture).. This 

_ gives details of the race venues, - 
and also indicates the prize 
money available for specific 
races. After the runners have 
been chosen for a particular 

race, players have the 
opportunity to bet on the horse 
of their choice (second picture). 
Bets must be between £5 and 
£500. The horses are then lined 

up to wait for the starter’s gun, 
_ and the players must sit back 
and wait while the race is run. 
Our final picture shows the 
horses slowing down after — 
passing the winning post, with 

~ our photographer’s selection 
finishing a poor fourth . . . 

ODDS-ON FAVOURITE 

The Sport of Kings — —or or just a mug 5 game? 
Opinions may vary as to the merits of horse 
racing, but Salamander Software’s Classic 
Racing for the Oric-1 and Atmos home 
computers is a clear winner in the flat race 
PUAN, stakes. 

) Gee RABE Hivea voll HEM eportuNlity to play 
the part of a race horse trainer over a season of 
meetings. It is a game for one to six players, but if 
there are fewer than six people playing, then the 
computer makes up the numbers so that each race 
will have six runners. The game allows you to 
choose the length of the season: a full season 
covers 16 race meetings, each consisting of six 
races. ‘Those with less stamina may select a shorter 
season. The player’s objective is to make as much 
money as possible. This may be achieved in two 
ways: you can collect prize money by training one 
of the first three horses in a race, or you may bet on 
the result. You must enter a runner for each race, 
but there is nothing to stop you betting on one of 
your opponents’ runners if you feel this gives you a 
better chance to win money. 

Your stable comprises 16 horses, and at the 
beginning of the season you have no idea of their 
merits. As early season races are for small prizes, 
this is the ideal time to experiment by trying your 
runners over different distances and in different 
ground conditions. This is simply a matter of trial 
and error — you must observe how a particular 
horse performs under given conditions and plan 
your strategy accordingly. This does entail copious 
note-taking — each time a horse runs you need to 
jot down the distance, the weight carried, the 
‘going’ (ground condition), and the result. It’s a 
pity that Salamander has failed to include a 
routine to print such details out automatically, as 
this would save a lot of effort. 
Once you have chosen all six of your runners for 

the first meeting, you will be given the names of 
your opponents’ horses and told the weight each 
will be carrying. The computer then allocates odds 
against each horse winning. At the start of the 
season this appears to be done in an arbitrary 
manner but, as the season wears on, horses with 
proven track records will start at shorter odds. 
Betting is compulsory — stakes must be between 
£5 and £500 — and the odds offered can be very 
generous. Because a winning (or placed) horse 
will collect prize money, it is often profitable to bet 
on an oOpponent’s runner, thus giving you two 
chances of making a profit. 

It is also possible to engineer betting * coups, by © 
entering a horse in races for which it is obviously 
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unsuitable — for example, a horse that performs — 
well over five furlongs in heavy going may be 
entered for two successive 1; mile races on firm 
ground. It will almost certainly lose ignominiously, 
and then may be entered in a more suitable race at 
good odds. However, once you have ascertained 
the ideal distance and going for a particular horse, 
you must resist the temptation to keeprunningitin — 
race after race — as in the real-life racing world, 
horses need to be rested every so often if they are 
to perform at their best. 
When all the bets have been placed, the action 

switches to the race itself. The horses amble into 
position, the starter calls them to order, then the 
Oric sound facilities produce a fair approximation 
of hoofbeats on turf as the runners head for the 
winning post. The race sequence is beautifully 
done: horses jostle for position in a realistic way 
and the runners are just as prone to erratic 
behaviour as their real-life counterparts are. It is 
infuriating to have to sit back and watch as your 
selection slows to a walk a hundred yards from the 
finish while the odds-on favourite glides past! 

At the end of the race, winning bets are paid and 
the process is repeated for the rest of the card until 
the end of the meeting. Each meeting has a track 
with different ground conditions and race 
distances, If you eventually decide that one of your 
horses is not up to standard it may be dropped 
from your roster by simply failing to race it at three 
successive meetings. This gives you one less factor 
to worry about, but it costs you a £1,000 penalty at 
each remaining meeting. 

Towards the end of the season, the races 
become harder to win, as all the players then have 
a much better idea of their horses’ capabilities and 

_ are less likely to enter runners in races they have no 
chance’ of winning. The rewards are 
correspondingly greater — the first three home in 
the Derby, which is run during the last meeting of 
the season, share £90,000 in prize money. 

Classic Racing is the most impressive piece of 
software yet for the Oric and Atmos. The race 
sequences are compelling viewing, and the 
strategy involved in planning your season’s 
campaign makes this a game that will hold your 
interest over repeated playing. It’s possible to win 
more than £250,000 over the full season — the 
only problem is collecting your winnings! 

Classic Racing: For 48K Oric-1/Atmos, £6.95 
Publishers: Salamander Software, 17 Norfolk Road, 

Brighton BN1 3AA | 
Author: Paul Neal 

Joysticks: Not required 
Format: Cassette 
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